Sodium-Ion Intercalation Mechanism in MXene Nanosheets

ACS Nano. 2016 Mar 22;10(3):3334-41. doi: 10.1021/acsnano.5b06958. Epub 2016 Feb 18.

Abstract

MXene, a family of layered compounds consisting of nanosheets, is emerging as an electrode material for various electrochemical energy storage devices including supercapacitors, lithium-ion batteries, and sodium-ion batteries. However, the mechanism of its electrochemical reaction is not yet fully understood. Herein, using solid-state (23)Na magic angle spinning NMR and density functional theory calculation, we reveal that MXene Ti3C2Tx in a nonaqueous Na(+) electrolyte exhibits reversible Na(+) intercalation/deintercalation into the interlayer space. Detailed analyses demonstrate that Ti3C2Tx undergoes expansion of the interlayer distance during the first sodiation, whereby desolvated Na(+) is intercalated/deintercalated reversibly. The interlayer distance is maintained during the whole sodiation/desodiation process due to the pillaring effect of trapped Na(+) and the swelling effect of penetrated solvent molecules between the Ti3C2Tx sheets. Since Na(+) intercalation/deintercalation during the electrochemical reaction is not accompanied by any substantial structural change, Ti3C2Tx shows good capacity retention over 100 cycles as well as excellent rate capability.

Keywords: 23Na NMR; MXene; intercalation; negative electrode; sodium-ion battery.

Publication types

  • Research Support, Non-U.S. Gov't