Antarctica contains some of the most productive regions on Earth for collecting meteorites. These small areas of glacial ice are known as meteorite stranding zones, where upward-flowing ice combines with high ablation rates to concentrate large numbers of englacially transported meteorites onto their surface. However, meteorite collection data shows that iron and stony-iron meteorites are significantly under-represented from these regions as compared with all other sites on Earth. Here we explain how this discrepancy may be due to englacial solar warming, whereby meteorites a few tens of centimetres below the ice surface can be warmed up enough to cause melting of their surrounding ice and sink downwards. We show that meteorites with a high-enough thermal conductivity (for example, iron meteorites) can sink at a rate sufficient to offset the total annual upward ice transport, which may therefore permanently trap them below the ice surface and explain their absence from collection data.