Phenyl-Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior

Angew Chem Int Ed Engl. 2016 Mar 7;55(11):3672-6. doi: 10.1002/anie.201511217. Epub 2016 Feb 16.

Abstract

A novel type of quantum dot (Ph-CN) is manufactured from graphitic carbon nitride by "lining" the carbon nitride structure with phenyl groups through supramolecular preorganization. This approach requires no chemical etching or hydrothermal treatments like other competing nanoparticle syntheses and is easy and safe to use. The Ph-CN nanoparticles exhibit bright, tunable fluorescence, with a high quantum yield of 48.4 % in aqueous colloidal suspensions. Interestingly, the observed Stokes shift of approximately 200 nm is higher than the maximum values reported for carbon nitride based fluorophores. The high quantum yield and the large Stokes shift are related to the structural surface organization of the phenyl groups, which affects the π-electron delocalization in the conjugated carbon nitride networks and induces colloidal stability. The remarkable performance of the Ph-CN nanoparticles in imaging is demonstrated by a simple incubation study with HeLa cells.

Keywords: Stokes shifts; carbon nitrides; cell imaging; colloidal suspensions; fluorescence.

Publication types

  • Research Support, Non-U.S. Gov't