Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis

J Biol Chem. 2016 Mar 25;291(13):7060-9. doi: 10.1074/jbc.M115.707430. Epub 2016 Feb 8.

Abstract

Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb.

Keywords: Mycobacterium tuberculosis; allosteric regulation; bacterial metabolism; fatty acid metabolism; microbial pathogenesis; pyruvate kinase; tricarboxylic acid cycle (TCA cycle) (Krebs cycle).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aconitic Acid / metabolism
  • Adenosine Monophosphate / metabolism
  • Adenosine Monophosphate / pharmacology
  • Allosteric Regulation
  • Animals
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Carbon / metabolism*
  • Citric Acid / metabolism
  • Culture Media / chemistry
  • Enzyme Activation
  • Fatty Acids, Volatile / pharmacology
  • Female
  • Gene Deletion
  • Gene Expression
  • Glucose / metabolism
  • Glucose-6-Phosphate / metabolism
  • Glucose-6-Phosphate / pharmacology
  • Glutamic Acid / metabolism
  • Glutamic Acid / pharmacology
  • Glycolysis / drug effects
  • Glycolysis / genetics*
  • Isocitrate Dehydrogenase / antagonists & inhibitors
  • Isocitrate Dehydrogenase / genetics
  • Isocitrate Dehydrogenase / metabolism
  • Ketoglutaric Acids / metabolism
  • Mice
  • Mice, SCID
  • Mycobacterium tuberculosis / drug effects
  • Mycobacterium tuberculosis / genetics
  • Mycobacterium tuberculosis / metabolism*
  • Phosphoenolpyruvate / metabolism
  • Pyruvaldehyde / metabolism
  • Pyruvate Kinase / genetics
  • Pyruvate Kinase / metabolism*
  • Survival Analysis
  • Tuberculosis / microbiology
  • Tuberculosis / mortality

Substances

  • Bacterial Proteins
  • Culture Media
  • Fatty Acids, Volatile
  • Ketoglutaric Acids
  • Citric Acid
  • Glutamic Acid
  • Adenosine Monophosphate
  • Glucose-6-Phosphate
  • Pyruvaldehyde
  • Phosphoenolpyruvate
  • Carbon
  • Aconitic Acid
  • Isocitrate Dehydrogenase
  • Pyruvate Kinase
  • Glucose