Prostate cancer diagnosis by optical coherence tomography: First results from a needle based optical platform for tissue sampling

J Biophotonics. 2016 May;9(5):490-8. doi: 10.1002/jbio.201500252. Epub 2016 Feb 9.

Abstract

The diagnostic accuracy of Optical Coherence Tomography (OCT) based optical attenuation coefficient analysis is assessed for the detection of prostate cancer. Needle-based OCT-measurements were performed on the prostate specimens. Attenuation coefficients were determined by an earlier described in-house developed software package. The mean attenuation coefficients (benign OCT data; malignant OCT data; p-value Mann-Whitney U test) were: (3.56 mm(-1) ; 3.85 mm(-1) ; p < 0.0001) for all patients combined. The area under the ROC curve was 0.64. In order to circumvent the effect of histopathology mismatching, we performed a sub-analysis on only OCT data in which tumor was visible in two subsequent histopathological prostate slices. This analysis could be performed in 3 patients. The mean attenuation coefficients (benign OCT data; malignant OCT data; p-value Mann-Whitney U test) were: (3.23 mm(-1) ; 4.11 mm(-1) ; p < 0.0001) for all patients grouped together. The area under the ROC curve was 0.89. Functional OCT of the prostate has shown to differentiate between cancer and healthy prostate tissue. The optical attenuation coefficient in malignant tissue was significantly higher in malignant tissue compared to benign prostate tissue. Further studies are required to validate these initial results in a larger group of patients with a more tailored histopathology matching protocol.

Keywords: Diagnosis; Imaging; Optical Coherence Tomography; Prostate cancer.

MeSH terms

  • Humans
  • Male
  • Needles
  • Prostatic Neoplasms / diagnostic imaging*
  • Tomography, Optical Coherence*