Three-dimensional (3D) graphene-based polymer/graphene aerogels with excellent mechanical properties are crucial for broad applications. The creation of such polymer/graphene aerogels remains challenging because of the poor dispersion and compatibility of polymer within the graphene matrix. By using the freezing-directed assembly of graphene under the assistance of surfactant, 3D macroporous polystyrene/graphene aerogels (MPS-GAs) with lightweight, superelastivity (80 % strain), high strength (80 kPa), and good electrical properties have been achieved in this study. The as-prepared MPS-GAs shows excellent electromechanical performance with stable cyclic resilient properties and sensitive resistance responses, thus making the MPS-GAs promising candidates for applications in actuators, elastic conductors, strain/pressure sensors, and wearable devices.
Keywords: aerogels; graphene; polystyrene; sensors; superelastivity.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.