pTop 1.0: A High-Accuracy and High-Efficiency Search Engine for Intact Protein Identification

Anal Chem. 2016 Mar 15;88(6):3082-90. doi: 10.1021/acs.analchem.5b03963. Epub 2016 Feb 23.

Abstract

There has been tremendous progress in top-down proteomics (TDP) in the past 5 years, particularly in intact protein separation and high-resolution mass spectrometry. However, bioinformatics to deal with large-scale mass spectra has lagged behind, in both algorithmic research and software development. In this study, we developed pTop 1.0, a novel software tool to significantly improve the accuracy and efficiency of mass spectral data analysis in TDP. The precursor mass offers crucial clues to infer the potential post-translational modifications co-occurring on the protein, the reliability of which relies heavily on its mass accuracy. Concentrating on detecting the precursors more accurately, a machine-learning model incorporating a variety of spectral features was trained online in pTop via a support vector machine (SVM). pTop employs the sequence tags extracted from the MS/MS spectra and a dynamic programming algorithm to accelerate the search speed, especially for those spectra with multiple post-translational modifications. We tested pTop on three publicly available data sets and compared it with ProSight and MS-Align+ in terms of its recall, precision, running time, and so on. The results showed that pTop can, in general, outperform ProSight and MS-Align+. pTop recalled 22% more correct precursors, although it exported 30% fewer precursors than Xtract (in ProSight) from a human histone data set. The running speed of pTop was about 1 to 2 orders of magnitude faster than that of MS-Align+. This algorithmic advancement in pTop, including both accuracy and speed, will inspire the development of other similar software to analyze the mass spectra from the entire proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Databases, Protein*
  • Information Storage and Retrieval*
  • Machine Learning
  • Proteins / analysis*
  • Software

Substances

  • Proteins