Variations in relative biological effectiveness (RBE) from a fixed value of 1.1 are critical in proton beam therapy. To date, studies estimating RBE at multiple positions relative to the spread-out Bragg peak (SOBP) have been predominantly performed using passive scattering methods, and limited data are available for spot-scanning beams. Thus, to investigate the RBE of spot-scanning beams, Chinese hamster fibroblast V79 cells were irradiated using the beam line at the Hokkaido University Hospital Proton Therapy Center. Cells were placed at six different depths, including the entrance of the proton beam and the proximal and distal part of the SOBP. Surviving cell fractions were analyzed using colony formation assay, and cell survival curves were obtained by the curve fitted using a linear-quadratic model. RBE10 and RBE37 were 1.15 and 1.21 at the center of the SOBP, respectively. In contrast, the distal region showed higher RBE values (1.50 for RBE10 and 1.85 for RBE37). These results are in line with those of previous studies conducted using passive scattering proton beams. Taken together, these data strongly suggest that variations in RBE should be considered during treatment planning for spot-scanning beams as well as for passive scattering proton beams.
Keywords: proton therapy; radiotherapy; relative biological effectiveness; spot scanning.
© The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.