Aims: MicroRNA-10 (miR-10) was originally shown to regulate angiogenesis by directly modulating the levels of membrane-bound fms-related tyrosine kinase 1 (mflt1) and its soluble splice isoform sflt1 post-transcriptionally in zebrafish. Given that flt1 knockdown incompletely rescues the angiogenic phenotypes in miR-10 morphants, flt1 is unlikely to be the only important target of miR-10 in endothelial cells (ECs). It will be interesting to investigate new mechanism responsible for angiogenic defect induced by miR-10 knockdown.
Methods and results: Firstly, we demonstrated that miR-10a and miR-10b (miR-10a/10b) were highly enriched in embryonic zebrafish ECs using deep sequencing, Taqman polymerase chain reaction, and in situ hybridisation. Subsequently, we proved that loss of miR-10a/10b impaired blood vessel outgrowth through regulating tip cell behaviours. Mib1 was identified as a potential direct target of miR-10a/10b through in silicon analysis and in vitro luciferase sensor assay. In vivo reporter assay in zebrafish embryos confirmed the binding of miR-10 with 3'-UTR of zebrafish mib1. Furthermore, inhibition of mib1 and Notch signaling rescued the angiogenic defects in miR-10-deficient zebrafish embryos. In addition, we provided evidences that miR-10 regulates human ECs behaviour through targeting Mib1 as well.
Conclusion: Taken together, these results indicate that miR-10 regulates the angiogenic behaviour in a Notch-dependent manner by directly targeting mib1.
Keywords: Notch; angiogenesis; miR-10a; miR-10b; mib1.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.