Rheumatic heart disease (RHD) makes a heavy burden in human lives and economy. The proteomic analysis of acute rheumatic heart disease (ARHD) can provide precious data to study RHD at the early stages, but no one has looked into. So based on our early research we applied the method of continuous GAS stimulation on Lewis rats to duplicate the animal model of ARHD. And the mitral valves of rats in control group (n=10) and ARHD group (n=10) were selected for proteomic analysis of ARHD with the iTRAQ labeling based 2D LC-ESI-MS/MS quantitative technology. We identified 3931 proteins in valve tissue out of which we obtained 395 differentially expressed proteins containing 176 up-regulated proteins and 119 down-regulated proteins. Changes in levels of GAPDH (6.793 times higher than the control group) and CD9 (2.63 times higher than the control group) were confirmed by Western blot or immunohistochemistry. The differentially expressed proteins such as GAPDH, CD9, myosin, collagen and RAC1 may be potential biomarkers for ARHD. Moreover, the mitral valve protein profile shed light on further understanding and investigating ARHD.
Keywords: Acute rheumatic heart disease; ITRAQ quantitative proteomics; animal model; mitral valve protein profile; mitral valve tissue.