A novel silk fibroin nanofibrous membrane for guided bone regeneration: a study in rat calvarial defects

Am J Transl Res. 2015 Nov 15;7(11):2244-53. eCollection 2015.

Abstract

A novel membrane for guided bone regeneration (GBR), constituting silk fibroin (SF) nanofiber from native silk nanofibril solution, was prepared by electrospinning process. Another barrier membrane, a collagen-type membrane (Bio-Gide®), was used as a comparative sample. Twelve healthy male Sprague-Dawley rats were used in this study. Bilateral round defects were created in the calvarial bone. The bone regenerative efficacy was evaluated in rat calvarial defects. Animals were killed at 4 and 12 weeks. Bone regeneration was analyzed using micro-computed tomography and histological analysis. The SF nanofibrous membrane showed superior results with regard to mechanical tensile properties. At 4 weeks, the bone volume and collagen I positive areas in the SF group were greater than in the Bio-Gide group. At 12 weeks, the defect had completely healed with new bone in both the groups. In conclusion, the SF nanofibrous membranes showed satisfactory mechanical stability, good biocompatibility, slow degradability, and improved new bone regeneration without any adverse inflammatory reactions. Considering the low cost and low risk of disease transmission, the SF nanofibrous membrane is a potential candidate for GBR therapy compared with the widely used collagen membranes.

Keywords: Silk fibroin nanofiber; guided bone regeneration (GBR); rat calvarial defects.