Synthesis, crystal structure, electronic structure, and photoelectric response properties of KCu2SbS3

Dalton Trans. 2016 Feb 28;45(8):3473-9. doi: 10.1039/c5dt03910j.

Abstract

Copper thioantimonates have received enormous attention due to their potential for applications in photovoltaic devices. In this work, a new layered compound KCu2SbS3 was synthesized via a reactive flux method using thiourea as a reactive flux. The compound crystallizes in the triclinic space group P1[combining macron]. The structure features two-dimensional [Cu2SbS3](-) layers stacking along the c axis with K(+) ions intercalated between the layers. Each [Cu2SbS3](-) layer is composed of two single graphene-like layers connected via interlayer Cu-S bonds and CuSb contacts. The optical measurements indicate that the compound has a band gap of 1.7 eV. The Hall effect measurement shows that KCu2SbS3 is a p-type semiconductor with a carrier concentration of 7 × 10(16) cm(-3). First-principles calculations reveal that the direct transition occurs between Cu-3d-S-3p orbitals (VBM) to Sb-5p-S-3p orbitals (CBM). The photoelectric response properties of KCu2SbS3 under visible light irradiation were analyzed. The photocurrent is 3.7 μA cm(-2) at 10 V bias, demonstrating its potential for applications in photoelectric devices.

Publication types

  • Research Support, Non-U.S. Gov't