Background: To discuss the role of Liver 3D printing in the treatment of complex massive hepatocarcinoma with rare variations of portal vein.
Methods: Data of enhanced computed tomography (CT) were imported into the medical image three-dimensional visualization system (MI-3DVS) to create Standard Template Library (STL) files, which were read by 3D printer to construct life-size 3D physical liver model. The preoperative surgical planning was performed on the 3D model according to individualized segmentation, volume calculation, and virtual operation.
Results: The 3D printing liver model was consistent with the model in MI-3DVS. The segment 4 portal vein (S4PV) was absent and variant S4PV originated from right anterior portal vein (RAPV). The preoperative surgical planning was designed according to the relationship between tumor and portal vein variation. Theoretically, the residual liver volume was 40.76%, if the right hemihepatctomy was carried out after the trunk of right portal vein (RPV) ligated. However, the actual residual volume was only 21.37% due to the variant S4PV originates from RAPV, thus, right trisegmentectomy would have to be performed. Interestingly, after optimization, the residual liver volume increased to 57.25% as narrow-margin right hemihepatectomy with the variant S4PV reserved were performed. The final resection was determined to be narrow-margin right hemihepatectomy. The actual surgical procedure was consistent with the preoperative surgical planning.
Conclusion: Liver 3D printing may be a safe and effective technique to improve the success rate of surgery and reduce the operation risk for patients with complex massive hepatocarcinoma with variations of portal vein.
Keywords: Three-dimensional printing; hepatocarcinoma; three-dimensional reconstruction.