Establishment of two quantitative nested qPCR assays targeting the human EPO transgene

Gene Ther. 2016 Apr;23(4):330-9. doi: 10.1038/gt.2016.2. Epub 2016 Jan 11.

Abstract

For ethical and safety reasons it is critical to develop easily implemented assays with high sensitivity and specificity for gene doping surveillance. Two nested quantitative real-time PCR (qPCR) assays were developed that target the human EPO (hEPO) cDNA sequence in a circular form, representative of recombinant adeno-associated viral (rAAV) vector genomes found in vivo. Through an interlaboratory evaluation, the assays were validated and utilized in an in vitro blinded study. These assays are specific and extremely sensitive with a limit of detection (LOD) of 1 copy of circular plasmid DNA and a limit of quantification (LOQ) of 10 to 20 copies in the presence of 500 ng of human genomic DNA (hgDNA) extracted from WBCs. Additionally, using the two nested qPCR assays in a non-human primate study, where macaques were injected intramuscularly with a rAAV8 vector harboring a promoterless hEPO cDNA sequence, the viral vector was detected 8 to 14 weeks post-injection in macaque WBCs. The high sensitivity of the nested qPCR approach along with the capability of quantifying target DNA, make this approach a reliable tool for gene doping surveillance and the monitoring of exogenous DNA sequences.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • DNA / blood
  • DNA / genetics
  • DNA / isolation & purification
  • Doping in Sports / prevention & control
  • Erythropoietin / analysis
  • Erythropoietin / blood
  • Erythropoietin / genetics*
  • Genetic Vectors
  • Humans
  • Macaca
  • Macaca fascicularis
  • Male
  • Plasmids / genetics
  • Polymerase Chain Reaction / methods*
  • Real-Time Polymerase Chain Reaction
  • Sensitivity and Specificity
  • Transgenes*

Substances

  • EPO protein, human
  • Erythropoietin
  • DNA