Familial hemophagocytic lymphohistiocytosis type 2 (FHL2), caused by perforin 1 (PRF1), is a genetic disorder of lymphocyte cytotoxicity that usually presents in the first 2 years of life and has a poor prognosis. Late onset of FHL2 has been sporadically reported, and the mechanism is largely unknown. A newly diagnosed FHL2 patient was detected to have compound mutations in both PRF1 alleles and positive Epstein-Barr virus (EBV) infection. Her brother carried the same mutations and EBV infection status but kept healthy. To search the potential unknown mechanisms, we performed whole-exome sequencing analysis. The patient and her asymptomatic brother carried the same heterozygous missense (c.916G>A) and frameshift mutation (c.65delC) in PRF1. Germline mutation analysis demonstrated that only the proband was exclusively detected with a homozygous missense mutation (S1006L) in the PCDH18 gene, whereas others were found to have a heterozygous mutation (S1006L) of PCDH18. The calculated stability (free energy) changes showed that the mutation of PCDH18 mainly destabilized the protein structure. Furthermore, the mutation (S1006L) could lessen the PCDH18-induced inhibition of target cell activation and reduce the apoptosis of T lymphocytes. This study is the first to perform whole-exome sequencing analysis to search the potential "second-hit" mechanism that underlies the onset of FHL2. A novel type of compound heterozygous mutation has been found in PRF1. The detection of the homozygous germline mutation in PCDH18 strongly argues that the presence of a "second" germline mutation besides the PRF1 gene might be potentially an important mechanism for triggering the onset of FHL2.
Copyright © 2016 Elsevier Inc. All rights reserved.