Molecular Dynamics and QM/MM Calculations Predict the Substrate-Induced Gating of Cytochrome P450 BM3 and the Regio- and Stereoselectivity of Fatty Acid Hydroxylation

J Am Chem Soc. 2016 Jan 27;138(3):837-45. doi: 10.1021/jacs.5b08737. Epub 2016 Jan 13.

Abstract

Theory predicts herein enzymatic activity from scratch. We show that molecular dynamics (MD) simulations and quantum-mechanical/molecular mechanics (QM/MM) calculations of the fatty acid hydroxylase P450 BM3 predict the binding mechanism of the fatty acid substrate and its enantio/regioselective hydroxylation by the active species of the enzyme, Compound I. The MD simulations show that the substrate's entrance involves hydrogen-bonding interactions with Pro25, Glu43, and Leu188, which induce a huge conformational rearrangement that closes the substrate channel by pulling together the A helix and the β1 sheet to the F/G loop. In turn, at the bottom of the substrate's channel, residue Phe87 controls the regioselectivity by causing the substrate's chain to curl up and juxtapose its CH2 positions ω-1/ω-2/ω-3 to Compound I while preventing access to the endmost position, ω-CH3. Phe87 also controls the stereoselectivity by the enantioselective steric blocking of the pro-S C-H bond, thus preferring R hydroxylation. Indeed, the MD simulations of the mutant Phe87Ala predict predominant ω hydroxylation. These findings, which go well beyond the X-ray structural data, demonstrate the predictive power of theory and its insight, which can potentially be used as a partner of experiment for eventual engineering of P450 BM3 with site-selective C-H functionalization capabilities.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Cytochrome P-450 Enzyme System / chemistry*
  • Cytochrome P-450 Enzyme System / genetics
  • Cytochrome P-450 Enzyme System / metabolism*
  • Enzyme Activation
  • Fatty Acids / chemistry
  • Fatty Acids / metabolism*
  • Hydroxylation
  • Molecular Dynamics Simulation*
  • NADPH-Ferrihemoprotein Reductase / chemistry*
  • NADPH-Ferrihemoprotein Reductase / genetics
  • NADPH-Ferrihemoprotein Reductase / metabolism*
  • Quantum Theory*
  • Stereoisomerism
  • Substrate Specificity

Substances

  • Bacterial Proteins
  • Fatty Acids
  • Cytochrome P-450 Enzyme System
  • NADPH-Ferrihemoprotein Reductase
  • flavocytochrome P450 BM3 monoxygenases