Understanding the mechanism of high transition temperature (T{c}) superconductivity in cuprates has been hindered by the apparent complexity of their multilayered crystal structure. Using a cryogenic scanning tunneling microscopy (STM), we report on layer-by-layer probing of the electronic structures of all ingredient planes (BiO, SrO, CuO{2}) of Bi{2}Sr{2}CaCu_2}O{8+δ} superconductor prepared by argon-ion bombardment and annealing technique. We show that the well-known pseudogap (PG) feature observed by STM is inherently a property of the BiO planes and thus irrelevant directly to Cooper pairing. The SrO planes exhibit an unexpected van Hove singularity near the Fermi level, while the CuO{2} planes are exclusively characterized by a smaller gap inside the PG. The small gap becomes invisible near T{c}, which we identify as the superconducting gap. The above results constitute severe constraints on any microscopic model for high T{c} superconductivity in cuprates.