Background: We present here final clinical results of the COHORT trial and both translational sub-studies aiming at identifying patients at risk of radiation-induced subcutaneous fibrosis (RISF): (i) radiation-induced lymphocyte apoptosis (RILA) and (ii) candidates of certain single-nucleotide polymorphisms (SNPs).
Patients and methods: Post-menopausal patients with stage I-II breast cancer (n = 150) were enrolled and assigned to either concurrent (arm A) or sequential radiotherapy (RT)-letrozole (arm B). Among them, 121 were eligible for RILA and SNP assays. Grade ≥2 RISF were the primary end point. Secondary end points were lung and heart events and carcinologic outcome. RILA was performed to predict differences in RISF between individuals. A genome-wide association study was performed to identify SNPs associated with RILA and RISF. Analyses were done by intention to treat.
Results: After a median follow-up of 74 months, 5 patients developed a grade ≥2 RISF. No significant difference was observed between arms A and B. Neither grade ≥2 lung nor symptomatic cardiac toxicity was observed. Median RILA value of the five patients who had grade ≥2 RISF was significantly lower compared with those who developed grade ≤1 RISF (6.9% versus 13%, P = 0.02). Two SNPs were identified as being significantly associated with RILA: rs1182531 (P = 4.2 × 10(-9)) and rs1182532 (P = 3.6 × 10(-8)); both located within the PHACTR3 gene on chromosome 20q13.33.
Conclusions: With long-term follow-up, letrozole can safely be delivered concomitantly with adjuvant breast RT. Translational sub-studies showed that high RILA values were correlated with patients who did not develop RISF.
Registered clinical trial: NCT00208273.
Keywords: breast cancer; radiation-induced late effects; radio-hormonotherapy.
© The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.