In tissues, macrophages are exposed to metabolic, homeostatic and immunoregulatory signals of local or systemic origin that influence their basal functions and responses to danger signals. Signal-transduction pathways regulated by extracellular signals are coupled to distinct sets of broadly expressed stimulus-regulated transcription factors whose ability to elicit gene-expression changes is influenced by the accessibility of their binding sites in the macrophage genome. In turn, accessibility of macrophage-specific transcriptional regulatory elements (enhancers and promoters) is specified by transcription factors that determine the macrophage lineage or impose their tissue-specific properties. Here we review recent findings that advance the understanding of mechanisms underlying priming and signal-dependent activation of macrophages and discuss the effect of genetic variation on these processes.