A calibrationless parallel imaging technique developed previously for (1)H MRI was modified and tested for hyperpolarized (13)C MRI for applications requiring large FOV and high spatial resolution. The technique was demonstrated with both retrospective and prospective under-sampled data acquired in phantom and in vivo rat studies. A 2-fold acceleration was achieved using a 2D symmetric EPI readout equipped with random blips on the phase encode dimension. Reconstructed images showed excellent qualitative agreement with fully sampled data. Further acceleration can be achieved using acquisition schemes that incorporate multi-dimensional under-sampling.
Keywords: Carbon-13; Hyperpolarization; Parallel imaging.
Copyright © 2015 Elsevier Inc. All rights reserved.