Endoplasmic reticulum (ER) stress triggers the integrated ER-stress response (IERSR) that ensures cellular survival of ER stress and represents a primordial form of innate immunity. We investigated the role of IERSR duringLeishmania amazonensisinfection. Treatment of RAW 264.7 infected macrophages with the ER stress-inducing agent thapsigargin (TG; 1 μM) increasedL. amazonensisinfectivity in an IFN1-α receptor (IFNAR)-dependent manner. In Western blot assays, we showed thatL. amazonensisactivates the inositol-requiring enzyme (IRE1)/ X-box binding protein (XBP)-1-splicing arms of the IERSR in host cells. In chromatin immunoprecipitation (ChIP) assays, we showed an increased occupancy of enhancer and promoter sequences for theIfnbgene by XBP1 in infected RAW 264.7 cells. Knocking down XBP1 expression by transducing RAW 264.7 cells with the short hairpin XBP1 lentiviral vector significantly reduced the parasite proliferation associated with impaired translocation of phosphorylated IFN regulatory transcription factor (IRF)-3 to the nucleus and a decrease in IFN1-β expression. Knocking down XBP1 expression also increased NO concentration, as determined by Griess reaction and reduced the expression of antioxidant genes, such as heme oxygenase (HO)-1, that protect parasites from oxidative stress. We conclude thatL. amazonensisactivation of XBP1 plays a critical role in infection by protecting the parasites from oxidative stress and increasing IFN1-β expression.-Dias-Teixeira, K. L., Calegari-Silva, T. C., Dos Santos, G. R. R. M., Vitorino dos Santos, J., Lima, C., Medina, J. M., Aktas, B. H., Lopes, U. G. The integrated endoplasmic reticulum stress response inLeishmania amazonensismacrophage infection: the role of X-box binding protein 1 transcription factor.
Keywords: ER stress; IFN1-β; XBP1; oxidative stress; thapsigargin IRE1.
© FASEB.