We report a new method for detecting human IgG (hIgG) in serum on integrated-optical Mach-Zehnder interferometer biosensors realized in a high index contrast polymer material system. In the linear range of the sensor (5-200 nM) we observed excellent signal recoveries (95-110%) in buffer and serum samples, which indicate the absence of matrix effects. Signal enhancement was reached by using secondary anti-human IgG antibodies, which bind to immobilized target IgGs and allow detecting concentrations down to 100 pM. This polymer based optical sensor is fully compatible with cost-efficient mass production technologies, which makes it an attractive alternative to inorganic optical sensors. Graphical abstract of the hIgG measured on polymer based photonic sensors using a direct binding assay and a signal enhancement strategy with secondary antibodies.
Keywords: Mach-Zehnder interferometer; biosensor; human IgG; human serum; injection molding; polyimide; polymer waveguide.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.