Methotrexate (MTX) is a folic acid antagonist that is widely used as an immunosuppressant and chemotherapeutic agent. After high-dose administration of MTX serum levels must be monitored to determine when to administer leucovorin, a folic acid analog that bypasses the enzyme inhibition caused by MTX and reverses its toxicity. We describe a rapid and simple turbulent flow liquid chromatography (TFLC) method implementing positive heated electrospray ionization (HESI) for the accurate and precise determination of MTX, 7-hydroxymethotrexate (7-OH MTX), and 4-amino-4-deoxy-N(10)-methylpteroic acid (DAMPA) concentrations in serum. MTX is isolated from serum samples (100 μL) after protein precipitation with a methanolic solution containing internal standard (MTX-D3) followed by centrifugation. The supernatant is injected into the turbulent flow liquid chromatography which is followed by electrospray positive ionization tandem mass spectrometry (TFLC-ESI-MS/MS) and quantified using a six-point calibration curve. For MTX, 7-OH MTX, and DAMPA the assays were linear from 20 to 1000 nmol/L. Dilutions of 10-, 100-, and 1000-fold were validated giving a clinically reportable range of 20 to 1.0 × 10(6) nmol/L. Within-day and between-day precisions at concentrations spanning the analytical measurement ranges were less than 10 % for all three analytes.
Keywords: Carboxypeptidase-G2; Mass spectrometry; Methotrexate; Therapeutic drug monitoring; Turbulent flow liquid chromatography.