Synovial sarcoma accounts for almost 10% of all soft tissue sarcomas, and its prognosis is poor with 5-year survival rates at 36%. Thus, new treatments and therapeutic targets for synovial sarcoma are required. Tumor-initiating cells have been defined by the ability for self-renewal and multipotent differentiation, and they exhibit higher tumorigenic capacity, chemoresistance and radiation resistance, expecting to be a new therapeutic target. In synovial sarcoma, the presence of such stemness remains largely unclear; thus, we analyzed whether synovial sarcoma possessed tumor-initiating cells and explored specific markers, and we discovered that synovial sarcoma cell lines possessed heterogeneity by way of containing a sphere-forming subpopulation highly expressing NANOG, OCT4 and SOX2. By expression microarray analysis, CXCR4 was identified to be highly expressed in the sphere subpopulation and correlated with stem-cell-associated markers. Inhibition of CXCR4 suppressed the cell proliferation of synovial sarcoma cell lines in vitro. The tumor-initiating ability of CXCR4-positive cells was demonstrated by xenograft propagation assay. CXCR4-positive cells showed higher tumorigenicity than negative ones and possessed both self-renewal and multipotent differentiation ability. Immunohistochemical analysis of 39 specimens of synovial sarcoma patients revealed that CXCR4 strongly correlated with poor prognosis of synovial sarcoma. Thus, we conclude that CXCR4 is the marker of synovial sarcoma-initiating cells, a new biomarker for prognosis and a new potential therapeutic target.