Idiopathic basal ganglia calcification (IBGC), or Fahr's disease, is a neurological disorder characterized by widespread calcification in the brain. Recently, several causative genes have been identified, but the histopathologic features of the brain lesions and expression of the gene products remain unclear. Here, we report the clinical and autopsy features of a 62-year-old Japanese man with familial IBGC, in whom an SLC20A2 mutation was identified. The patient developed mild cognitive impairment and parkinsonism. A brain CT scan demonstrated abnormal calcification in the bilateral basal ganglia, thalami and cerebellum. An MRI study at this point revealed glioblastoma, and the patient died 6 months later. At autopsy, symmetric calcification in the basal ganglia, thalami, cerebellar white matter and deeper layers of the cerebral cortex was evident. The calcification was observed in the tunica media of small arteries, arterioles and capillaries, but not in veins. Immunohistochemistry using an antibody against type III sodium-dependent phosphate transporter 2 (PiT-2), the SLC20A2 product, demonstrated that astrocytic processes were labeled in several regions in control brains, whereas in the patient, reactivity in astrocytes was apparently weak. Immunoblotting demonstrated a marked decrease of PiT-2 in the patient. There are few autopsy reports of IBGC patients with confirmation of the genetic background. The autopsy features seem informative for better understanding the histogenesis of IBGC lesions.
Keywords: Fahr's disease; PiT-2; SLC20A2; idiopathic basal ganglia calcification; primary familial brain calcification.
© 2015 Japanese Society of Neuropathology.