Acute ischemic stroke induces systemic inflammation, exhibited as changes in body temperature, white blood cell counts and C-reactive protein (CRP) levels. The aim of the present study was to observe the effects of intravenous thrombolytic therapy on inflammatory indices in order to investigate the hypothesis that post-stroke systemic inflammatory response occurs in response to the necrosis of brain tissues. In this study, 62 patients with acute cerebral infarction and indications for intravenous thrombolysis were divided into three groups on the basis of their treatment and response: Successful thrombolysis (n=36), failed thrombolysis (n=12) and control (n=14) groups. The body temperature, white blood cell counts and high-sensitivity (hs)-CRP levels were recorded pre-treatment and on post-stroke days 1, 3, 5 and 7. Spearman's correlation analysis showed that the pre-treatment National Institutes of Health Stroke Scale (NIHSS) score positively correlated with body temperature, white blood cell count and hs-CRP levels. On day 3 of effective intravenous thrombolysis, the body temperature and white blood cell were decreased and on days 3 and 5, the serum levels of hs-CRP were reduced compared with those in the failed thrombolysis and control groups. The results indicate that the systemic inflammatory response following acute cerebral infarction was mainly caused by ischemic injury of local brain tissue; the more serious the stroke, the stronger the inflammatory response. Ultra-early thrombolytic therapy may inhibit the necrosis of brain tissue and thereby reduce the inflammatory response.
Keywords: C-reactive protein; body temperature; infarction; inflammation; thrombolytic therapy; white blood cell.