JNJ-26481585 is a second-generation histone deacetylase inhibitor with broad-range efficacy and improved pharmacodynamic properties. In the present study, we investigated the therapeutic potential of JNJ-26481585 and its molecular mechanisms of action in rhabdomyosarcoma (RMS). Here, we report that JNJ- 26481585's anticancer activity critically depends on an intact mitochondrial pathway of apoptosis. JNJ-26481585 induces apoptosis and also inhibits long-term clonogenic survival of several RMS cell lines at nanomolar concentrations that cause histone acetylation. Importantly, JNJ-26481585 significantly suppresses tumor growth in vivo in two preclinical RMS models, that is, the chorioallantoic membrane model and a xenograft mouse model. Mechanistically, we identify activation of the mitochondrial pathway of apoptosis as a key event that is critically required for JNJ-26481585-mediated cell death. JNJ-26481585 upregulates expression levels of several BH3-only proteins including Bim, Puma and Noxa, which all contribute to JNJ-26481585-mediated apoptosis, as knockdown of Bim, Puma or Noxa significantly inhibits cell death. This shift toward proapoptotic Bcl-2 proteins promotes activation of Bax and Bak as a critical event, as genetic silencing of Bax or Bak protects against JNJ-26481585-induced apoptosis. Intriguingly, rescue experiments reveal that JNJ-26481585 triggers Bax/Bak activation independently of caspase activation and activates caspase-9 as the initiator caspase in the cascade, as Bcl-2 overexpression, but not the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) blocks JNJ-26481585-induced Bax/Bak activation and caspase-9 cleavage. In conclusion, JNJ-26481585 exerts potent antitumor activity against RMS in vitro and in vivo by engaging mitochondrial apoptosis before caspase activation and represents a promising therapeutic for further investigation in RMS.