Discrete choice experiments of pharmacy services: a systematic review

Int J Clin Pharm. 2016 Jun;38(3):620-30. doi: 10.1007/s11096-015-0221-1.

Abstract

Background Two previous systematic reviews have summarised the application of discrete choice experiments to value preferences for pharmacy services. These reviews identified a total of twelve studies and described how discrete choice experiments have been used to value pharmacy services but did not describe or discuss the application of methods used in the design or analysis. Aims (1) To update the most recent systematic review and critically appraise current discrete choice experiments of pharmacy services in line with published reporting criteria and; (2) To provide an overview of key methodological developments in the design and analysis of discrete choice experiments. Methods The review used a comprehensive strategy to identify eligible studies (published between 1990 and 2015) by searching electronic databases for key terms related to discrete choice and best-worst scaling (BWS) experiments. All healthcare choice experiments were then hand-searched for key terms relating to pharmacy. Data were extracted using a published checklist. Results A total of 17 discrete choice experiments eliciting preferences for pharmacy services were identified for inclusion in the review. No BWS studies were identified. The studies elicited preferences from a variety of populations (pharmacists, patients, students) for a range of pharmacy services. Most studies were from a United Kingdom setting, although examples from Europe, Australia and North America were also identified. Discrete choice experiments for pharmacy services tended to include more attributes than non-pharmacy choice experiments. Few studies reported the use of qualitative research methods in the design and interpretation of the experiments (n = 9) or use of new methods of analysis to identify and quantify preference and scale heterogeneity (n = 4). No studies reported the use of Bayesian methods in their experimental design. Conclusion Incorporating more sophisticated methods in the design of pharmacy-related discrete choice experiments could help researchers produce more efficient experiments which are better suited to valuing complex pharmacy services. Pharmacy-related discrete choice experiments could also benefit from more sophisticated analytical techniques such as investigations into scale and preference heterogeneity. Employing these sophisticated methods for both design and analysis could extend the usefulness of discrete choice experiments to inform health and pharmacy policy.

Keywords: Best–worst scaling; Discrete choice experiment; Preferences; Review; Values.

Publication types

  • Review
  • Systematic Review

MeSH terms

  • Choice Behavior*
  • Data Interpretation, Statistical
  • Humans
  • Pharmacy Research / methods*
  • Pharmacy Service, Hospital*
  • Research Design