Describing biological macromolecular energetics from computer simulations can pose major challenges, and often necessitates enhanced conformational sampling. We describe the calculation of conformational free-energy profiles along carefully chosen collective coordinates: "consensus" normal modes, developed recently as robust alternatives to conventional normal modes. In an application to the HIV-1 protease, we obtain efficient sampling of significant flap opening movements governing inhibitor binding from relatively short simulations, in close correspondence with experimental results.