Heterozygous Mutations in BMP6 Pro-peptide Lead to Inappropriate Hepcidin Synthesis and Moderate Iron Overload in Humans

Gastroenterology. 2016 Mar;150(3):672-683.e4. doi: 10.1053/j.gastro.2015.10.049. Epub 2015 Nov 12.

Abstract

Background & aims: Hereditary hemochromatosis is a heterogeneous group of genetic disorders characterized by parenchymal iron overload. It is caused by defective expression of liver hepcidin, the main regulator of iron homeostasis. Iron stimulates the gene encoding hepcidin (HAMP) via the bone morphogenetic protein (BMP)6 signaling to SMAD. Although several genetic factors have been found to cause late-onset hemochromatosis, many patients have unexplained signs of iron overload. We investigated BMP6 function in these individuals.

Methods: We sequenced the BMP6 gene in 70 consecutive patients with a moderate increase in serum ferritin and liver iron levels who did not carry genetic variants associated with hemochromatosis. We searched for BMP6 mutations in relatives of 5 probands and in 200 healthy individuals (controls), as well as in 2 other independent cohorts of hyperferritinemia patients. We measured serum levels of hepcidin by liquid chromatography-tandem mass spectrometry and analyzed BMP6 in liver biopsy specimens from patients by immunohistochemistry. The functions of mutant and normal BMP6 were assessed in transfected cells using immunofluorescence, real-time quantitative polymerase chain reaction, and immunoblot analyses.

Results: We identified 3 heterozygous missense mutations in BMP6 (p.Pro95Ser, p.Leu96Pro, and p.Gln113Glu) in 6 unrelated patients with unexplained iron overload (9% of our cohort). These mutations were detected in less than 1% of controls. p.Leu96Pro also was found in 2 patients from the additional cohorts. Family studies indicated dominant transmission. Serum levels of hepcidin were inappropriately low in patients. A low level of BMP6, compared with controls, was found in a biopsy specimen from 1 patient. In cell lines, the mutated residues in the BMP6 propeptide resulted in defective secretion of BMP6; reduced signaling via SMAD1, SMAD5, and SMAD8; and loss of hepcidin production.

Conclusions: We identified 3 heterozygous missense mutations in BMP6 in patients with unexplained iron overload. These mutations lead to loss of signaling to SMAD proteins and reduced hepcidin production. These mutations might increase susceptibility to mild-to-moderate late-onset iron overload.

Keywords: Bone Morphogenetic Protein; Genetic Analysis; HH; Signal Transduction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Animals
  • Biopsy
  • Bone Morphogenetic Protein 6 / genetics*
  • Bone Morphogenetic Protein 6 / metabolism
  • Case-Control Studies
  • Cell Line
  • Chromatography, Liquid
  • DNA Mutational Analysis
  • Female
  • Ferritins / blood
  • Genetic Association Studies
  • Genetic Predisposition to Disease
  • Hemochromatosis / blood
  • Hemochromatosis / genetics*
  • Hemochromatosis / metabolism*
  • Hepcidins / biosynthesis*
  • Hepcidins / blood
  • Heterozygote*
  • Humans
  • Immunohistochemistry
  • Iron / metabolism*
  • Liver / metabolism*
  • Male
  • Middle Aged
  • Mutation, Missense*
  • Opossums
  • Phenotype
  • Smad Proteins, Receptor-Regulated / metabolism
  • Tandem Mass Spectrometry
  • Transfection

Substances

  • BMP6 protein, human
  • Bone Morphogenetic Protein 6
  • HAMP protein, human
  • Hepcidins
  • Smad Proteins, Receptor-Regulated
  • Ferritins
  • Iron