Bevacizumab and radiotherapy for the treatment of glioblastoma: brothers in arms or unholy alliance?

Oncotarget. 2016 Jan 19;7(3):2313-28. doi: 10.18632/oncotarget.6320.

Abstract

Glioblastoma (GBM) represents the most frequent primary brain tumor in adults and carries a dismal prognosis despite aggressive, multimodal treatment regimens involving maximal resection, radiochemotherapy, and maintenance chemotherapy. Histologically, GBMs are characterized by a high degree of VEGF-mediated vascular proliferation. In consequence, new targeted anti-angiogenic therapies, such as the monoclonal anti-VEGF-A antibody bevacizumab, have proven effective in attenuating tumor (neo)angiogenesis and were shown to possess therapeutic activity in several phase II trials. However, the role of bevacizumab in the context of multimodal therapy approaches appears to be rather complex. This review will give insights into current concepts, limitations, and controversies regarding the molecular mechanisms and the clinical benefits of bevacizumab treatment in combination with radio(chemo)therapy--particularly in face of the results of recent phase III trials, which failed to demonstrate convincing improvements in overall survival (OS).

Keywords: VEGF; angiogenesis; bevacizumab; glioma; radiotherapy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adult
  • Angiogenesis Inhibitors / therapeutic use*
  • Bevacizumab / therapeutic use*
  • Brain Neoplasms / mortality
  • Brain Neoplasms / pathology
  • Brain Neoplasms / therapy*
  • Combined Modality Therapy / methods
  • Glioblastoma / mortality
  • Glioblastoma / pathology
  • Glioblastoma / therapy*
  • Humans
  • Neovascularization, Pathologic / drug therapy*
  • Vascular Endothelial Growth Factor A / antagonists & inhibitors
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • Angiogenesis Inhibitors
  • VEGFA protein, human
  • Vascular Endothelial Growth Factor A
  • Bevacizumab