Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels

Carbohydr Polym. 2016 Jan 20:136:1017-26. doi: 10.1016/j.carbpol.2015.09.095. Epub 2015 Sep 30.

Abstract

In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications.

Keywords: Biomaterials; Bone tissue engineering; Hyaluronic acid; Hydrogel; Poly(N(ɛ)-acryloyl-l-lysine).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acrylates / chemistry*
  • Animals
  • Biocompatible Materials / adverse effects
  • Biocompatible Materials / chemistry*
  • Cell Line
  • Cell Proliferation
  • Cell Survival
  • Compressive Strength
  • Hyaluronic Acid / analogs & derivatives*
  • Hyaluronic Acid / chemistry
  • Hydrogels / adverse effects
  • Hydrogels / chemistry*
  • Lysine / adverse effects
  • Lysine / analogs & derivatives*
  • Lysine / chemical synthesis
  • Lysine / chemistry
  • Mice
  • Osteoblasts / drug effects
  • Osteoblasts / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Tissue Scaffolds / adverse effects
  • Tissue Scaffolds / chemistry*

Substances

  • Acrylates
  • Biocompatible Materials
  • Hydrogels
  • Hyaluronic Acid
  • Lysine