UV and solar photo-degradation of naproxen: TiO₂ catalyst effect, reaction kinetics, products identification and toxicity assessment

J Hazard Mater. 2016 Mar 5:304:329-36. doi: 10.1016/j.jhazmat.2015.10.045. Epub 2015 Oct 28.

Abstract

Direct photolysis and TiO2-photocatalytic degradation of naproxen (NPX) in aqueous solution were studied using a UV lamp and solar irradiation. The degradation of NPX was found to be in accordance with pseudo-first order kinetics, the photocatalytic process being more efficient than photolysis. The NPX removal by photolysis (pHinitial 6.5) was 83% after 3h, with 11% of chemical oxygen demand (COD) reduction, whereas the TiO2-UV process led to higher removals of both NPX (98%) and COD (25%). The apparent pseudo-first-order rate constant (kapp) for NPX degradation by photolysis ranged from 0.0050 min(-1) at pH 3.5 to 0.0095 min(-1) at pH 6.5, while it was estimated to be 0.0063 min(-1) under acidic conditions in photocatalysis, increasing by 4-fold at pH 6.5. Ultra High Performance Liquid chromatography (UHPLC) coupled with a triple quadrupole detector and also a hybrid mass spectrometer which combines the linear ion trap triple quadrupole (LTQ) and OrbiTrap mass analyser, were used to identify NPX degradation products. The main intermediates detected were 1-(6-methoxynaphtalene-2-yl) ethylhydroperoxide, 2-ethyl-6-methoxynaphthalene, 1-(6-methoxynaphtalen-2-yl) ethanol, 1-(6-methoxynaphtalen-2-yl) ethanone and malic acid. Solar photocatalysis of NPX showed COD removals of 33% and 65% after 3 and 4h of treatment, respectively, and some reduction of acute toxicity, evaluated by the exposure of Eisenia andrei to OECD soils spiked with NPX-treated solutions.

Keywords: Acute toxicity; Chemical oxygen demand (COD); Naproxen; Photocatalysis; Photolysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Catalysis
  • Chromatography, High Pressure Liquid
  • Kinetics
  • Mass Spectrometry
  • Naproxen / chemistry*
  • Naproxen / toxicity
  • Oligochaeta / drug effects
  • Photolysis
  • Soil Pollutants / toxicity
  • Sunlight*
  • Titanium / chemistry*
  • Titanium / radiation effects*
  • Ultraviolet Rays*
  • Water Pollutants, Chemical / chemistry*
  • Water Pollutants, Chemical / toxicity

Substances

  • Soil Pollutants
  • Water Pollutants, Chemical
  • titanium dioxide
  • Naproxen
  • Titanium