Background: Accurate and precise detection of brain lesions on MR images (MRI) is paramount for accurately relating lesion location to impaired behavior. In this paper, we present a novel method to automatically detect brain lesions from a T1-weighted 3D MRI. The proposed method combines the advantages of both unsupervised and supervised methods.
Methods: First, unsupervised methods perform a unified segmentation normalization to warp images from the native space into a standard space and to generate probability maps for different tissue types, e.g., gray matter, white matter and fluid. This allows us to construct an initial lesion probability map by comparing the normalized MRI to healthy control subjects. Then, we perform non-rigid and reversible atlas-based registration to refine the probability maps of gray matter, white matter, external CSF, ventricle, and lesions. These probability maps are combined with the normalized MRI to construct three types of features, with which we use supervised methods to train three support vector machine (SVM) classifiers for a combined classifier. Finally, the combined classifier is used to accomplish lesion detection.
Results: We tested this method using T1-weighted MRIs from 60 in-house stroke patients. Using leave-one-out cross validation, the proposed method can achieve an average Dice coefficient of 73.1% when compared to lesion maps hand-delineated by trained neurologists. Furthermore, we tested the proposed method on the T1-weighted MRIs in the MICCAI BRATS 2012 dataset. The proposed method can achieve an average Dice coefficient of 66.5% in comparison to the expert annotated tumor maps provided in MICCAI BRATS 2012 dataset. In addition, on these two test datasets, the proposed method shows competitive performance to three state-of-the-art methods, including Stamatakis et al., Seghier et al., and Sanjuan et al.
Conclusions: In this paper, we introduced a novel automated procedure for lesion detection from T1-weighted MRIs by combining both an unsupervised and a supervised component. In the unsupervised component, we proposed a method to identify lesioned hemisphere to help normalize the patient MRI with lesions and initialize/refine a lesion probability map. In the supervised component, we extracted three different-order statistical features from both the tissue/lesion probability maps obtained from the unsupervised component and the original MRI intensity. Three support vector machine classifiers are then trained for the three features respectively and combined for final voxel-based lesion classification.