Although the lithium-sulfur battery has attracted significant attention because of its high theoretical energy density and low cost of elemental sulfur, its real application is still hindered by multiple challenges, especially the polysulfides shuttled between the cathode and anode electrodes. By originating from β-cyclodextrin and introducing a quaternary ammonium cation into β-cyclodextrin polymer, a new multifunctional aqueous polycation binder (β-CDp-N(+)) for the sulfur cathode is obtained. The unique hyperbranched network structure of the new binder β-CDp-N(+) as well as its multidimensional noncovalent interactions and the introduced cations endowed β-CDp-N(+) with some new abilities: a sulfur-electrode-stabilized ability, a polysulfides-immobilized ability, and a volume-accommodated ability, which help to ease the primary problems of the lithium-sulfur battery, i.e., the shuttle of polysulfides and the volume change of the sulfur during charge and discharge. It is demonstrated that cycling performance and rate capability of the cathodes can be the improved by using β-CDp-N(+) as the binder compared to other well-known binders. Even with high sulfur loading of 5.5 mg cm(-2), the cathode with β-CDp-N(+) still can deliver an areal capacity of 4.4 mAh cm(-2) at 50 mA g(-1) after 45 cycles, which is much higher than that achieved using the cathode with the conventional binder (0.9 mAh cm(-2)).
Keywords: binder; high sulfur loading; lithium−sulfur battery; polycation; β-cyclodextrin polymer.