Advanced carbon materials are important for the next-generation of energy storage apparatus, such as electrochemical capacitors. Here, the physical and electrochemical properties of carbonised filter paper (FP) were investigated. FP is comprised of pure cellulose and is a standardised material. After carbonisation at temperatures ranging from 600 to 1700 °C, FP was contaminant-free, containing only carbon and some oxygenated species, and its primary fibre structure was retained (diameter ≈20-40 μm). The observed enhancement in conductivity of the carbonised FP was correlated with the carbonisation temperature. Electrochemical capacitance in the range of ≈1.8-117 F g(-1) was achieved, with FP carbonised at 1500 °C showing the best performance. This high capacitance was stable with >87 % retained after 3000 charge-discharge cycles. These results show that carbonised FP, without the addition of composite materials, exhibits good supercapacitance performance, which competes well with existing electrodes made of carbon-based materials. Furthermore, given the lower cost and renewable source, cellulose-based materials are the more eco-friendly option for energy storage applications.
Keywords: carbon materials; carbonisation temperatures; filter paper; supercapacitors.