Missense mutations in ATP1A3 encoding Na(+),K(+)-ATPase α3 are the primary cause of alternating hemiplegia of childhood (AHC). Most ATP1A3 mutations in AHC lie within a cluster in or near transmembrane α-helix TM6, including I810N that is also found in the Myshkin mouse model of AHC. These mutations all substantially reduce Na(+),K(+)-ATPase α3 activity. Herein, we show that Myshkin mice carrying a wild-type Atp1a3 transgene that confers a 16 % increase in brain-specific total Na(+),K(+)-ATPase activity show significant phenotypic improvements compared with non-transgenic Myshkin mice. Interventions to increase the activity of wild-type Na(+),K(+)-ATPase α3 in AHC patients should be investigated further.
Keywords: Alternating hemiplegia; Atp1a3; Mice; Na+,K+-ATPase α3; Transgenic rescue.