Background: Cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As) exposure is ubiquitous and has been associated with higher risk of growth restriction and cardiometabolic and neurodevelopmental disorders. However, cost-efficient strategies to identify at-risk populations and potential sources of exposure to inform mitigation efforts are limited. The objective of this study was to describe the spatial distribution and identify factors associated with Cd, Pb, Hg, and As concentrations in peripheral blood of pregnant women.
Methods: Heavy metals were measured in whole peripheral blood of 310 pregnant women obtained at gestational age ~12 weeks. Prenatal residential addresses were geocoded and geospatial analysis (Getis-Ord Gi* statistics) was used to determine if elevated blood concentrations were geographically clustered. Logistic regression models were used to identify factors associated with elevated blood metal levels and cluster membership.
Results: Geospatial clusters for Cd and Pb were identified with high confidence (p-value for Gi* statistic <0.01). The Cd and Pb clusters comprised 10.5 and 9.2 % of Durham County residents, respectively. Medians and interquartile ranges of blood concentrations (μg/dL) for all participants were Cd 0.02 (0.01-0.04), Hg 0.03 (0.01-0.07), Pb 0.34 (0.16-0.83), and As 0.04 (0.04-0.05). In the Cd cluster, medians and interquartile ranges of blood concentrations (μg/dL) were Cd 0.06 (0.02-0.16), Hg 0.02 (0.00-0.05), Pb 0.54 (0.23-1.23), and As 0.05 (0.04-0.05). In the Pb cluster, medians and interquartile ranges of blood concentrations (μg/dL) were Cd 0.03 (0.02-0.15), Hg 0.01 (0.01-0.05), Pb 0.39 (0.24-0.74), and As 0.04 (0.04-0.05). Co-exposure with Pb and Cd was also clustered, the p-values for the Gi* statistic for Pb and Cd was <0.01. Cluster membership was associated with lower education levels and higher pre-pregnancy BMI.
Conclusions: Our data support that elevated blood concentrations of Cd and Pb are spatially clustered in this urban environment compared to the surrounding areas. Spatial analysis of metals concentrations in peripheral blood or urine obtained routinely during prenatal care can be useful in surveillance of heavy metal exposure.