Oral delivery of biopharmaceutics drug disposition classification system (BDDCS) Class II or IV drugs with poor aqueous solubility and poor enzymatic and/or metabolic stability is very challenging. Bay41-4109, a member of the heteroaryldihydropyrimidine (HAP) family, inhibits HBV replication by destabilizing capsid assembly. It pertains to class II of the BDDCS which has a practically insoluble solubility which is 38 μg/mL (LYSA) and the oral delivery resulted in low bioavailability. The purpose of the current research work was to develop and evaluate Bay41-4109 loaded chitosan nanoparticles to increase the solubility and bioavailability for treatment of HBV. The Bay41-4109 nanoparticles were prepared by gelation of chitosan with tripolyphosphate (TPP) through ionic cross-linking. A three-factor three-level central composite design (CCD) was introduced to perform the experiments. A quadratic polynomial model was generated to predict and evaluate the independent variables with respect to the dependent variables. Bay41-4109 was encapsulated in the chitosan nanoparticles were demonstrated by PLM, FTIR, DSC, XRD and TEM etc. The in vivo results suggest that Bay41-4109 nanoparticles have better bioavailability and would be a promising approach for oral delivery of Bay41-4109 for the treatment of HBV.
Keywords: Bay41-4109; Cationic nanoparticles; Central composite factorial design; Chitosan; Drug encapsulation; Hepatitis B virus (HBV).
Copyright © 2015 Elsevier B.V. All rights reserved.