Runs of homozygosity (ROHs) are extended genomic regions of homozygous genotypes that record populations' mating patterns in the past. We performed microarray genotyping on 15 individuals from a small isolated Tunisian community. We estimated the individual and population genome-wide level of homozygosity from data on ROH above 0.5 Mb in length. We found a high average number of ROH per individual (48.2). The smallest ROH category (0.5-1.49 Mb) represents 0.93% of the whole genome, while medium-size (1.5-4.99 Mb) and long-size ROH (≥5 Mb) cover 1.18% and 0.95%, respectively. We found that genealogical individual inbreeding coefficients (Fped ) based on three- to four-generation pedigrees are not reliable indicators of the current proportion of genome-wide homozygosity inferred from ROH (FROH ) either for 0.5 or 1.5 Mb ROH length thresholds, while identity-by-descent sharing is a function of shared coancestry. This study emphasizes the effect of reproductive isolation and a prolonged practice of consanguinity that limits the genetic heterogeneity. It also provides evidence of both recent and ancient parental relatedness contribution to the current level of genome-wide homozygosity in the studied population. These findings may be useful for evaluation of long-term effects of inbreeding on human health and for future applications of ROHs in identifying recessive susceptibility genes.
Keywords: Tunisia; genealogy; human isolate; identity-by-descent; inbreeding; run of homozygosity.
© 2015 John Wiley & Sons Ltd/University College London.