Hollow Structured Silicon Anodes with Stabilized Solid Electrolyte Interphase Film for Lithium-Ion Batteries

ACS Appl Mater Interfaces. 2015 Oct 28;7(42):23501-6. doi: 10.1021/acsami.5b05970. Epub 2015 Oct 19.

Abstract

Silicon has been considered as a promising anode material for the next generation of lithium-ion batteries due to its high specific capacity. Its huge volume expansion during the alloying reaction with lithium spoils the stability of the interface between electrode and electrolyte, resulting in capacity degradation. Herein, we synthesized a novel hollow structured silicon material with interior space for accumulating the volume change during the lithiation. The as-prepared material shows excellent cycling stability, with a reversible capacity of ∼1650 m Ah g(-1) after 100 cycles, corresponding to 92% retention. The electrochemical impedance spectroscopy and differential scanning calorimetry were carried out to monitor the growth of SEI film, and the results confirm the stable solid electrolyte interphase film on the surface of hollow structured silicon.

Keywords: Coulombic efficiency; anode; interface stability; lithium-ion battery; silicon.

Publication types

  • Research Support, Non-U.S. Gov't