The agonist-induced activation of human δ-opioid receptor (δOR) has been shown to increase β- (BACE1) and γ-secretase activities leading to increased production of amyloid-β (Aβ) peptide. We have recently shown that phenylalanine to cysteine substitution at amino acid 27 in δOR (δOR-Phe27Cys) increases amyloid-β protein precursor processing through altered endocytic trafficking. Also, a genetic meta-analysis of the δOR-Phe27Cys variation (rs1042114) in two independent Alzheimer's disease (AD) patient cohorts indicated that the heterozygosity of δOR-Phe27Cys increases the risk of AD. Here, we investigated α-, β-, and γ-secretase activities in human brain with respect to δOR-Phe27Cys variation in the temporal cortex of 71 subjects with varying degree of AD-related neurofibrillary pathology (Braak stages I-VI). As a result, a significant increase in β- (p = 0.03) and γ- (p = 0.01), but not α-secretase, activities was observed in late stage AD samples (Braak stages V-VI), which were heterozygous for δOR-Phe27Cys as compared to the δOR-Phe27 and δOR-Cys27 homozygotes. The augmented β-secretase activity was not associated with increased mRNA expression or protein levels of BACE1 in the late stage AD patients, who were heterozygous for the δOR-Phe27Cys variation. These findings suggest that δOR-Phe27Cys variation modulates β- and γ-secretase activity in the late stages of AD likely via post-translational mechanisms other than alterations in the mRNA or protein levels of BACE1, or, in the expression of γ-secretase complex components.
Keywords: Alzheimer disease; amyloid-β; amyloid-β protein precursor; β-secretase; γ-secretase; δ-opioid receptor.