A light-reflecting balloon catheter for atraumatic tissue defect repair

Sci Transl Med. 2015 Sep 23;7(306):306ra149. doi: 10.1126/scitranslmed.aaa2406. Epub 2015 Sep 23.

Abstract

A congenital or iatrogenic tissue defect often requires closure by open surgery or metallic components that can erode tissue. Biodegradable, hydrophobic light-activated adhesives represent an attractive alternative to sutures, but lack a specifically designed minimally invasive delivery tool, which limits their clinical translation. We developed a multifunctional, catheter-based technology with no implantable rigid components that functions by unfolding an adhesive-loaded elastic patch and deploying a double-balloon design to stabilize and apply pressure to the patch against the tissue defect site. The device uses a fiber-optic system and reflective metallic coating to uniformly disperse ultraviolet light for adhesive activation. Using this device, we demonstrate closure on the distal side of a defect in porcine abdominal wall, stomach, and heart tissue ex vivo. The catheter was further evaluated as a potential tool for tissue closure in vivo in rat heart and abdomen and as a perventricular tool for closure of a challenging cardiac septal defect in a large animal (porcine) model. Patches attached to the heart and abdominal wall with the device showed similar inflammatory response as sutures, with 100% small animal survival, indicating safety. In the large animal model, a ventricular septal defect in a beating heart was reduced to <1.6 mm. This new therapeutic platform has utility in a range of clinical scenarios that warrant minimally invasive and atraumatic repair of hard-to-reach defects.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Catheters*
  • Rats
  • Wound Healing*