Fast and reliable methods for the determination of hydrophobicity and acidity are desired in pre-clinical drug development phases to eliminate compounds with poor pharmacokinetic properties. Reversed-phase high-performance liquid chromatography (RP HPLC) coupled with time-of-flight mass spectrometry (RP HPLC-ESI-TOF-MS) is a convenient technique for that purpose. In this work we determined the chromatographic measure of hydrophobicity (logkw) and dissociation constant (pKa) simultaneously for a large and diverse group of 161 drugs. Retention times were determined by means of RP HPLC-ESI-TOF-MS for a series of pH and organic modifier gradients. We were able to measure retention times for 140 out of 161 (87%) compounds. For those analytes logkw and pKa parameters were calculated and compared with literature and ACD Labs-calculated data. The determined chromatographic measure of hydrophobicity and dissociation constant was closely related to literature and theoretically calculated values. Applied methodology achieved the medium-throughput screening rate of 100 compounds per day and proved to be a simple, fast and reliable approach of assessing important physicochemical properties of drugs. This technique has certain limitations as it is not applicable for very hydrophilic analytes (logP<0.5) and compounds with identical molar masses.
Keywords: Acidity; Gradient RP HPLC; Hydrophobicity; Throughput analysis; pH/organic modifier.
Copyright © 2015 Elsevier B.V. All rights reserved.