A modeling framework for characterizing near-road air pollutant concentration at community scales

Sci Total Environ. 2015 Dec 15:538:905-21. doi: 10.1016/j.scitotenv.2015.06.139. Epub 2015 Sep 28.

Abstract

In this study, we combine information from transportation network, traffic emissions, and dispersion model to develop a framework to inform exposure estimates for traffic-related air pollutants (TRAPs) with a high spatial resolution. A Research LINE source dispersion model (R-LINE) is used to model multiple TRAPs from roadways at Census-block level for two U.S. regions. We used a novel Space/Time Ordinary Kriging (STOK) approach that uses data from monitoring networks to provide urban background concentrations. To reduce the computational burden, we developed and applied the METeorologically-weighted Averaging for Risk and Exposure (METARE) approach with R-LINE, where a set of selected meteorological data and annual average daily traffic (AADT) are used to obtain annual averages. Compared with explicit modeling, using METARE reduces CPU-time by 88-fold (46.8h versus 32min), while still retaining accuracy of exposure estimates. We show two examples in the Piedmont region in North Carolina (~105,000 receptors) and Portland, Maine (~7000 receptors) to characterize near-road air quality. Concentrations for NOx, PM2.5, and benzene in Portland drop by over 40% within 200m away from the roadway. The concentration drop in North Carolina is less than that in Portland, as previously shown in an observation-based study, showing the robustness of our approach. Heavy-duty diesel vehicles (HDDV) contribute over 55% of NOx and PM2.5 near interstate highways, while light-duty gasoline vehicles (LDGV) contribute over 50% of benzene to urban areas where multiple roadways intersect. Normalized mean error (NME) between explicit modeling and METARE in Portland ranges from 12.6 to 14.5% and normalized mean bias (NMB) ranges from -12.9 to -11.2%. When considering a static emission rate (i.e. the emission does not have temporal variability), both NME and NMB improved (10.5% and -9.5%). Modeled concentrations in Detroit, Michigan at an array of near-road monitors are within a factor of 2 of observed values for CO but not NOx.

Keywords: Air pollution; Dispersion; Emissions; High-resolution modeling; METARE; Near-road exposure; R-LINE; Traffic.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants / analysis*
  • Air Pollution / statistics & numerical data*
  • Environmental Monitoring*
  • Models, Chemical*
  • Particulate Matter / analysis
  • United States
  • Vehicle Emissions / analysis

Substances

  • Air Pollutants
  • Particulate Matter
  • Vehicle Emissions