Schwarz and Benditt found clustering of replicating cells in aortic endothelium in 1976 and discussed how homeostasis of the arterial wall is maintained through this nonrandom distribution of replicating cells. However, it is still unclear how cells of vascular walls turnover. In order to address this issue, we evaluated distribution of the cells in mitotic cycle, labeled by Ki67-immunostaining, in serial histological sections of twelve carotid arteries of six adult male Japanese rabbits. As a result, a total of 1713 Ki67-positive endothelial cells (ECs) and 1247 Ki67-positive smooth muscle cells (SMCs) were identified. The Ki67-positivity rate in ECs and SMCs were about 0.048% and 0.0027%, respectively. Many of the Ki67-positive cells clustered in two (EC, 37%; SMC, 33%), three to four (EC, 8%; SMC, 28%), and five to eight cells (EC, 5%; SMC, 10%). Clusters having more than eight cells were not found. Thus, it can be speculated that the cell division of proliferating ECs and SMCs occur four times at most. These novel findings offer great insights for better understanding of the mechanism that underlies cell number regulation of the blood vessel.
Keywords: Ki67; carotid artery; endothelial cells; rabbit; serial section; smooth muscle cells.
© 2015 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.