Background: Mechanical pain hypersensitivity associated with physical trauma to peripheral nerve depends on T-helper (Th) cells expressing the algesic cytokine, interleukin (IL)-17A. Fibronectin (FN) isoform alternatively spliced within the IIICS region encoding the 25-residue-long connecting segment 1 (CS1) regulates T cell recruitment to the sites of inflammation. Herein, we analyzed the role of CS1-containing FN (FN-CS1) in IL-17A expression and pain after peripheral nerve damage.
Methods: Mass spectrometry, immunoblotting, and FN-CS1-specific immunofluorescence analyses were employed to examine FN expression after chronic constriction injury (CCI) in rat sciatic nerves. The acute intra-sciatic nerve injection of the synthetic CS1 peptide (a competitive inhibitor of the FN-CS1/α4 integrin binding) was used to elucidate the functional significance of FN-CS1 in mechanical and thermal pain hypersensitivity and IL-17A expression (by quantitative Taqman RT-PCR) after CCI. The CS1 peptide effects were analyzed in cultured primary Schwann cells, the major source of FN-CS1 in CCI nerves.
Results: Following CCI, FN expression in sciatic nerve increased with the dominant FN-CS1 deposition in endothelial cells, Schwann cells, and macrophages. Acute CS1 therapy attenuated mechanical allodynia (pain from innocuous stimulation) but not thermal hyperalgesia and reduced the levels of IL-17A expression in the injured nerve. CS1 peptide inhibited the LPS- or starvation-stimulated activation of the stress ERK/MAPK pathway in cultured Schwann cells.
Conclusions: After physical trauma to the peripheral nerve, FN-CS1 contributes to mechanical pain hypersensitivity by increasing the number of IL-17A-expressing (presumably, Th17) cells. CS1 peptide therapy can be developed for pharmacological control of neuropathic pain.