Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulations were employed to study 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules. Ag colloids were used as SERS substrates which were prepared by using hydroxylamine hydrochloride as reducing agent. Raman vibration modes and SERS characteristic peaks of 5-A-2MBI were assigned with the aid of DFT calculations. The molecular electrostatic potential (MEP) of 5-A-2MBI was used to discuss the possible adsorption behavior of 5-A-2MBI on Ag colloids. The spectral analysis showed that 5-A-2MBI molecules were slightly titled via the sulfur atoms adhering to the surfaces of Ag substrates. The obtained SERS spectral intensity decreased when lowering the 5-A-2MBI concentrations. A final detection limit on the concentration of 5×10(-7) mol · L(-1) was gained. SERS proved to be a simple, fast and reliable method for the detection and characterization of 5-A-2MBI molecules.
Keywords: 5-Amino-2-mercaptobenzimidazole (5-A-2MBI); Density functional theory (DFT); Detection; Surface-enhanced Raman spectroscopy (SERS).
Copyright © 2015 Elsevier B.V. All rights reserved.