The remarkable regenerative capacity of the zebrafish has made it an important model organism for studying heart regeneration. However, current loss-of-function studies are limited by a lack of conditional-knockout and effective gene-knockdown methods for the adult heart. Here, we report a novel siRNA knockdown method facilitated by poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) nanoparticles. The siRNA-encapsulated nanoparticles successfully entered cells and resulted in remarkable gene-specific knockdown in the adult heart. This effect was demonstrated by down-regulation of the Aldh1a2 and Dusp6 proteins after intrapleural delivery of nanoparticle-encapsulated siRNAs. Furthermore, siRNA-mediated knockdown of Aldh1a2 was sufficient to inhibit myocardial proliferation and decrease the numbers of Gata4-positive cardiomyocytes after ventricular resection. Therefore, the results of this work demonstrate that nanoparticle-facilitated siRNA delivery provides an alternative tool for loss-of-function studies of genes in the adult heart in particular and other organs in general in the adult zebrafish.
Keywords: Heart regeneration; PEG–PLA nanoparticles; Zebrafish; siRNA.
Copyright © 2015 Elsevier Inc. All rights reserved.