A close correlation between atherosclerosis, inflammation, and osteoporosis has been recognized, although the precise mechanism remains unclear. The growth factor progranulin (PGRN) is expressed in various cells such as macrophages, leukocytes, and chondrocytes. PGRN plays critical roles in a variety of diseases, such as atherosclerosis and arthritis by inhibiting Tumor Necrosis Factor-α (TNF-α) signaling. The purpose of this study was to investigate the effect of PGRN on bone metabolism. Forty-eight-week old female homozygous PGRN knockout mice (PGRN-KO) (n = 8) demonstrated severe low bone mass in the distal femur compared to age- and sex-matched wild type C57BL/6J mice (WT) (n = 8) [BV/TV (%): 5.8 vs. 16.6; p < 0.001, trabecular number (1/mm): 1.6 vs. 3.8; p < 0.001]. In vitro, PGRN inhibited TNF-α-induced osteoclastogenesis from spleen cells of PGRN-KO mice. Moreover, PGRN significantly promoted ALP activity, osteoblast-related mRNA (ALP, osteocalcin) expression in a dose-dependent manner and up-regulated osteoblastic differentiation by down-regulating phosphorylation of ERK1/2 in mouse calvarial cells. In conclusion, PGRN may be a promising treatment target for both atherosclerosis and inflammation-related osteoporosis.
Keywords: Bone metabolism; ERK1/2; Osteoblast; Osteoclast; Progranulin; TNF-α.
Copyright © 2015 Elsevier Inc. All rights reserved.